SciPy CSGraph 图结构
CSGraph 代表Compressed Sparse Graph,专注于基于稀疏矩阵表示的快速图算法。
图结构是算法学中最强大的框架之一。
图是各种关系的节点和边的集合,节点是与对象对应的顶点,边是对象之间的连接。
SciPy 提供了 scipy.sparse.csgraph 模块来处理图结构。
图表示
首先,让我们了解什么是稀疏图以及它如何表示图结构。
什么是稀疏图?
图只是节点的集合,节点之间有链接。图几乎可以代表任何事物——社交网络连接,其中每个节点都是一个人与熟人相连;图像,其中每个节点是一个像素并与相邻像素相连;高维分布中的点,其中每个节点都与其最近的邻居相连;几乎任何你能想象到的东西都可以用图表示。
表示图形数据的一种非常有效的方法是在稀疏矩阵中:让我们称其为 G。矩阵 G 的大小为 N x N,并且 G[i, j] 给出了节点 'i' 和节点之间的连接值'j'。稀疏图主要包含零——也就是说,大多数节点只有几个连接。
稀疏图子模块的创建是由 scikit-learn 中使用的几种算法推动的,其中包括以下内容 -
- Isomap - 一种流形学习算法,需要在图中找到最短路径。
- 分层聚类- 基于最小生成树的聚类算法。
- Spectral Decomposition - 基于稀疏图拉普拉斯算子的投影算法。
想象一下我们想要表示以下无向图
该图具有三个节点,其中节点 0 和 1 由权重为 2 的边连接,节点 0 和 2 由权重为 1 的边连接。 我们可以构建密集、屏蔽和稀疏的图形表示,如下例所示。请记住,无向图由对称矩阵表示。
import numpy as np
from scipy.sparse import csr_matrix
G_dense = np.array([[0, 2, 1],
[2, 0, 0],
[1, 0, 0]])
G_masked = np.ma.masked_values(G_dense, 0)
G_sparse = csr_matrix(G_dense)
print(G_sparse.data)
上述代码执行结果如下
[2 1 2 1]
这与之前的图相同,除了节点 0 和 2 由零权重的边连接。在这种情况下,上面的密集表示会导致歧义——如果零是一个有意义的值,如何表示非边缘。在这种情况下,必须使用掩码或稀疏表示来消除歧义。
让我们看以下示例。
import numpy as np
from scipy.sparse.csgraph import csgraph_from_dense
G2_data = np.array([
[np.inf, 2, 0],
[2, np.inf, np.inf],
[0, np.inf, np.inf]
])
G2_sparse = csgraph_from_dense(G2_data, null_value=np.inf)
print(G2_sparse.data)
上述代码执行结果如下
[2. 0. 2. 0.]
邻接矩阵
邻接矩阵(Adjacency Matrix)是表示顶点之间相邻关系的矩阵。
邻接矩阵逻辑结构分为两部分:V 和 E 集合,其中,V 是顶点,E 是边,边有时会有权重,表示节点之间的连接强度。
用一个一维数组存放图中所有顶点数据,用一个二维数组存放顶点间关系(边或弧)的数据,这个二维数组称为邻接矩阵。
看下下图实例:
顶点有 A、B、C,边权重有 1 和 2。
A 与 B 是连接的,权重为 1。
A 与 C 是连接的,权重为 2。
C 与 B 是没有连接的。
这个邻接矩阵可以表示为以下二维数组:
A B C
A:[0 1 2]
B:[1 0 0]
C:[2 0 0]
邻接矩阵又分为有向图邻接矩阵和无向图邻接矩阵。
无向图是双向关系,边没有方向:
有向图的边带有方向,是单向关系:
注
:上面两个图中的 D 节点是自环,自环是指一条边的两端为同一个节点。
连接组件
查看所有连接组件使用 connected_components() 方法。
import numpy as np
from scipy.sparse.csgraph import connected_components
from scipy.sparse import csr_matrix
arr = np.array([
[0, 1, 2],
[1, 0, 0],
[2, 0, 0]
])
newarr = csr_matrix(arr)
print(connected_components(newarr))
以上代码输出结果为:
(1, array([0, 0, 0], dtype=int32))
Dijkstra -- 最短路径算法
Dijkstra(迪杰斯特拉)最短路径算法,用于计算一个节点到其他所有节点的最短路径。
Scipy 使用 dijkstra() 方法来计算一个元素到其他元素的最短路径。
dijkstra() 方法可以设置以下几个参数:
- return_predecessors: 布尔值,设置 True,遍历所有路径,如果不想遍历所有路径可以设置为 False。
- indices: 元素的索引,返回该元素的所有路径。
- limit: 路径的最大权重。
查找元素 1 到 2 的最短路径:
import numpy as np
from scipy.sparse.csgraph import dijkstra
from scipy.sparse import csr_matrix
arr = np.array([
[0, 1, 2],
[1, 0, 0],
[2, 0, 0]
])
newarr = csr_matrix(arr)
print(dijkstra(newarr, return_predecessors=True, indices=0))
以上代码输出结果为:
(array([ 0., 1., 2.]), array([-9999, 0, 0], dtype=int32))
Floyd Warshall -- 弗洛伊德算法
弗洛伊德算法算法是解决任意两点间的最短路径的一种算法。
Scipy 使用 floyd_warshall() 方法来查找所有元素对之间的最短路径。
查找所有元素对之间的最短路径径:
import numpy as np
from scipy.sparse.csgraph import floyd_warshall
from scipy.sparse import csr_matrix
arr = np.array([
[0, 1, 2],
[1, 0, 0],
[2, 0, 0]
])
newarr = csr_matrix(arr)
print(floyd_warshall(newarr, return_predecessors=True))
以上代码输出结果为:
(array([[ 0., 1., 2.],
[ 1., 0., 3.],
[ 2., 3., 0.]]), array([[-9999, 0, 0],
[ 1, -9999, 0],
[ 2, 0, -9999]], dtype=int32))
Bellman Ford -- 贝尔曼-福特算法
贝尔曼-福特算法是解决任意两点间的最短路径的一种算法。
Scipy 使用 bellman_ford() 方法来查找所有元素对之间的最短路径,通常可以在任何图中使用,包括有向图、带负权边的图。
使用负权边的图查找从元素 1 到元素 2 的最短路径:
import numpy as np
from scipy.sparse.csgraph import bellman_ford
from scipy.sparse import csr_matrix
arr = np.array([
[0, -1, 2],
[1, 0, 0],
[2, 0, 0]
])
newarr = csr_matrix(arr)
print(bellman_ford(newarr, return_predecessors=True, indices=0))
以上代码输出结果为:
(array([ 0., -1., 2.]), array([-9999, 0, 0], dtype=int32))
深度优先顺序
depth_first_order() 方法从一个节点返回深度优先遍历的顺序。
可以接收以下参数:
- 图
- 图开始遍历的元素
给定一个邻接矩阵,返回深度优先遍历的顺序:
import numpy as np
from scipy.sparse.csgraph import depth_first_order
from scipy.sparse import csr_matrix
arr = np.array([
[0, 1, 0, 1],
[1, 1, 1, 1],
[2, 1, 1, 0],
[0, 1, 0, 1]
])
newarr = csr_matrix(arr)
print(depth_first_order(newarr, 1))
以上代码输出结果为:
(array([1, 0, 3, 2], dtype=int32), array([ 1, -9999, 1, 0], dtype=int32))
广度优先顺序
breadth_first_order() 方法从一个节点返回广度优先遍历的顺序。
可以接收以下参数:
- 图
- 图开始遍历的元素
给定一个邻接矩阵,返回广度优先遍历的顺序:
import numpy as np
from scipy.sparse.csgraph import breadth_first_order
from scipy.sparse import csr_matrix
arr = np.array([
[0, 1, 0, 1],
[1, 1, 1, 1],
[2, 1, 1, 0],
[0, 1, 0, 1]
])
newarr = csr_matrix(arr)
print(breadth_first_order(newarr, 1))
以上代码输出结果为:
(array([1, 0, 2, 3], dtype=int32), array([ 1, -9999, 1, 1], dtype=int32))