迹忆客 专注技术分享

当前位置:主页 > 学无止境 > 编程语言 > Python >

Pandas 将列值转换为字符串

作者:迹忆客 最近更新:2024/04/23 浏览次数:

本教程介绍了如何将 DataFrame 的列值的数据类型转换为字符串。

import pandas as pd

employees_df = pd.DataFrame(
    {
        "Name": ["Ayush", "Bikram", "Ceela", "Kusal", "Shanty"],
        "Score": [31, 38, 33, 39, 35],
        "Age": [33, 34, 38, 45, 37],
    }
)

print(employees_df)

输出:

     Name  Score  Age
0   Ayush     31   33
1  Bikram     38   34
2   Ceela     33   38
3   Kusal     39   45
4  Shanty     35   37

我们将使用上面例子中显示的 DataFrame 来解释如何将 DataFrame 的列值的数据类型转换为字符串。


使用 apply() 方法将 DataFrame 的列值的数据类型转换为字符串

import pandas as pd

employees_df = pd.DataFrame(
    {
        "Name": ["Ayush", "Bikram", "Ceela", "Kusal", "Shanty"],
        "Score": [31, 38, 33, 39, 35],
        "Age": [33, 34, 38, 45, 37],
    }
)
print("DataFrame before Conversion:")
print(employees_df, "\n")
print("Datatype of columns before conversion:")
print(employees_df.dtypes, "\n")

employees_df["Age"] = employees_df["Age"].apply(str)

print("DataFrame after conversion:")
print(employees_df, "\n")
print("Datatype of columns after conversion:")
print(employees_df.dtypes)

输出:

DataFrame before Conversion:
     Name  Score  Age
0   Ayush     31   33
1  Bikram     38   34
2   Ceela     33   38
3   Kusal     39   45
4  Shanty     35   37

Datatype of columns before conversion:
Name     object
Score     int64
Age       int64
dtype: object

DataFrame after conversion:
     Name  Score Age
0   Ayush     31  33
1  Bikram     38  34
2   Ceela     33  38
3   Kusal     39  45
4  Shanty     35  37

Datatype of columns after conversion:
Name     object
Score     int64
Age      object
dtype: object

它将 Age 列的数据类型从 int64 改为代表字符串的 object 类型。


使用 applymap() 方法将所有 DataFrame 列的数据类型转换为 string

如果我们想将 DataFrame 中所有列值的数据类型改为 string 类型,我们可以使用 applymap() 方法。

import pandas as pd

employees_df = pd.DataFrame(
    {
        "Name": ["Ayush", "Bikram", "Ceela", "Kusal", "Shanty"],
        "Score": [31, 38, 33, 39, 35],
        "Age": [33, 34, 38, 45, 37],
    }
)
print("DataFrame before Conversion:")
print(employees_df, "\n")
print("Datatype of columns before conversion:")
print(employees_df.dtypes, "\n")

employees_df = employees_df.applymap(str)

print("DataFrame after conversion:")
print(employees_df, "\n")
print("Datatype of columns after conversion:")
print(employees_df.dtypes)

输出:

DataFrame before Conversion:
     Name  Score  Age
0   Ayush     31   33
1  Bikram     38   34
2   Ceela     33   38
3   Kusal     39   45
4  Shanty     35   37
zeppy@zeppy-G7-7588:~/test/Week-01/taddaa$ python3 1.py
DataFrame before Conversion:
     Name  Score  Age
0   Ayush     31   33
1  Bikram     38   34
2   Ceela     33   38
3   Kusal     39   45
4  Shanty     35   37

Datatype of columns before conversion:
Name     object
Score     int64
Age       int64
dtype: object

DataFrame after conversion:
     Name Score Age
0   Ayush    31  33
1  Bikram    38  34
2   Ceela    33  38
3   Kusal    39  45
4  Shanty    35  37

Datatype of columns after conversion:
Name     object
Score    object
Age      object
dtype: object

它将所有 DataFrame 列的数据类型转换为 string 类型,在输出中用 object 表示。


使用 astype() 方法将 DataFrame 列值的数据类型转换为 string

import pandas as pd

employees_df = pd.DataFrame(
    {
        "Name": ["Ayush", "Bikram", "Ceela", "Kusal", "Shanty"],
        "Score": [31, 38, 33, 39, 35],
        "Age": [33, 34, 38, 45, 37],
    }
)
print("DataFrame before Conversion:")
print(employees_df, "\n")
print("Datatype of columns before conversion:")
print(employees_df.dtypes, "\n")

employees_df["Score"] = employees_df["Score"].astype(str)

print("DataFrame after conversion:")
print(employees_df, "\n")
print("Datatype of columns after conversion:")
print(employees_df.dtypes)

输出:

DataFrame before Conversion:
     Name  Score  Age
0   Ayush     31   33
1  Bikram     38   34
2   Ceela     33   38
3   Kusal     39   45
4  Shanty     35   37

Datatype of columns before conversion:
Name     object
Score     int64
Age       int64
dtype: object

DataFrame after conversion:
     Name Score  Age
0   Ayush    31   33
1  Bikram    38   34
2   Ceela    33   38
3   Kusal    39   45
4  Shanty    35   37

Datatype of columns after conversion:
Name     object
Score    object
Age       int64
dtype: object

它将 employees_df Dataframe 中 Score 列的数据类型转换为 string 类型。

转载请发邮件至 1244347461@qq.com 进行申请,经作者同意之后,转载请以链接形式注明出处

本文地址:

相关文章

查找已安装的 Pandas 版本

发布时间:2024/04/23 浏览次数:116 分类:Python

在本文中,我们将介绍如何查找已安装的 Python Pandas 库版本。我们使用了内置版本功能和其他功能来显示其他已安装版本的详细信息。

Pandas 中的 Groupby 索引列

发布时间:2024/04/23 浏览次数:79 分类:Python

本教程将介绍如何使用 Python Pandas Groupby 对数据进行分类,然后将函数应用于类别。通过示例使用 groupby() 函数按 Pandas 中的多个索引列进行分组。

Pandas 通过 Groupby 应用变换

发布时间:2024/04/23 浏览次数:180 分类:Python

本教程演示了 Pandas Python 中与 groupby 方法一起使用的 apply 和 transform 之间的区别。

Pandas Vlookup

发布时间:2024/04/23 浏览次数:83 分类:Python

本教程演示如何在 Python 中使用 Pandas 通过不同的技术合并两个不同的表。

Pandas 中的散点矩阵

发布时间:2024/04/23 浏览次数:105 分类:Python

本教程演示了如何使用 scatter_matrix 函数在 Pandas 中创建散点图。

扫一扫阅读全部技术教程

社交账号
  • https://www.github.com/onmpw
  • qq:1244347461

最新推荐

教程更新

热门标签

扫码一下
查看教程更方便