迹忆客 专注技术分享

当前位置:主页 > 学无止境 > 编程语言 > Python >

Pandas DataFrame 选择列

作者:迹忆客 最近更新:2024/04/23 浏览次数:

本教程介绍了如何通过索引或使用 DataFrame.drop()DataFrame.filter() 方法从 Pandas DataFrame 中选择列。

我们将使用下面的 DataFrame df 来解释如何从 Pandas DataFrame 中选择列。

import pandas as pd

df = pd.DataFrame(
    {
        "A": [302, 504, 708, 103, 343, 565],
        "B": [100, 300, 400, 200, 400, 700],
        "C": [300, 400, 350, 100, 1000, 400],
        "D": [10, 15, 5, 0, 2, 7],
        "E": [4, 5, 6, 7, 8, 9],
    }
)

print(df)

输出:

     A    B     C   D  E
0  302  100   300  10  4
1  504  300   400  15  5
2  708  400   350   5  6
3  103  200   100   0  7
4  343  400  1000   2  8
5  565  700   400   7  9

使用索引操作从 Pandas DataFrame 中选择列

import pandas as pd

df = pd.DataFrame(
    {
        "A": [302, 504, 708, 103, 343, 565],
        "B": [100, 300, 400, 200, 400, 700],
        "C": [300, 400, 350, 100, 1000, 400],
        "D": [10, 15, 5, 0, 2, 7],
        "E": [4, 5, 6, 7, 8, 9],
    }
)

derived_df = df[["A", "C", "E"]]

print("The initial DataFrame is:")
print(df, "\n")

print("The DataFrame with A,C and E columns is:")
print(derived_df, "\n")

输出:

The initial DataFrame is:
     A    B     C   D  E
0  302  100   300  10  4
1  504  300   400  15  5
2  708  400   350   5  6
3  103  200   100   0  7
4  343  400  1000   2  8
5  565  700   400   7  9 

The DataFrame with A,C and E columns is:
     A     C  E
0  302   300  4
1  504   400  5
2  708   350  6
3  103   100  7
4  343  1000  8
5  565   400  9 

它从 DataFrame df 中选择列 ACE,并将这些列分配到 derived_df DataFrame 中。


使用 DataFrame.drop() 方法从 Pandas DataFrame 中选择列

import pandas as pd

df = pd.DataFrame(
    {
        "A": [302, 504, 708, 103, 343, 565],
        "B": [100, 300, 400, 200, 400, 700],
        "C": [300, 400, 350, 100, 1000, 400],
        "D": [10, 15, 5, 0, 2, 7],
        "E": [4, 5, 6, 7, 8, 9],
    }
)

derived_df = df.drop(["B", "D"], axis=1)

print("The initial DataFrame is:")
print(df, "\n")

print("The DataFrame with A,C and E columns is:")
print(derived_df, "\n")

输出:

The initial DataFrame is:
     A    B     C   D  E
0  302  100   300  10  4
1  504  300   400  15  5
2  708  400   350   5  6
3  103  200   100   0  7
4  343  400  1000   2  8
5  565  700   400   7  9 

The DataFrame with A,C and E columns is:
     A     C  E
0  302   300  4
1  504   400  5
2  708   350  6
3  103   100  7
4  343  1000  8
5  565   400  9 

它从 DataFrame df 中删除 BD 列,并将其余列分配给 derived_df。或者,它选择除 BD 以外的所有列,并将它们分配到 derived_df DataFrame 中。


使用 DataFrame.filter() 方法从 Pandas DataFrame 中选择列

import pandas as pd

df = pd.DataFrame(
    {
        "A": [302, 504, 708, 103, 343, 565],
        "B": [100, 300, 400, 200, 400, 700],
        "C": [300, 400, 350, 100, 1000, 400],
        "D": [10, 15, 5, 0, 2, 7],
        "E": [4, 5, 6, 7, 8, 9],
    }
)

derived_df = df.filter(["A", "C", "E"])

print("The initial DataFrame is:")
print(df, "\n")

print("The DataFrame with A,C and E columns is:")
print(derived_df, "\n")

输出:

The initial DataFrame is:
     A    B     C   D  E
0  302  100   300  10  4
1  504  300   400  15  5
2  708  400   350   5  6
3  103  200   100   0  7
4  343  400  1000   2  8
5  565  700   400   7  9 

The DataFrame with A,C and E columns is:
     A     C  E
0  302   300  4
1  504   400  5
2  708   350  6
3  103   100  7
4  343  1000  8
5  565   400  9

它从 DataFrame df 中提取或过滤 ACE 列,并将其分配给 DataFrame derived_df

转载请发邮件至 1244347461@qq.com 进行申请,经作者同意之后,转载请以链接形式注明出处

本文地址:

相关文章

查找已安装的 Pandas 版本

发布时间:2024/04/23 浏览次数:116 分类:Python

在本文中,我们将介绍如何查找已安装的 Python Pandas 库版本。我们使用了内置版本功能和其他功能来显示其他已安装版本的详细信息。

Pandas 中的 Groupby 索引列

发布时间:2024/04/23 浏览次数:79 分类:Python

本教程将介绍如何使用 Python Pandas Groupby 对数据进行分类,然后将函数应用于类别。通过示例使用 groupby() 函数按 Pandas 中的多个索引列进行分组。

Pandas 通过 Groupby 应用变换

发布时间:2024/04/23 浏览次数:180 分类:Python

本教程演示了 Pandas Python 中与 groupby 方法一起使用的 apply 和 transform 之间的区别。

Pandas Vlookup

发布时间:2024/04/23 浏览次数:83 分类:Python

本教程演示如何在 Python 中使用 Pandas 通过不同的技术合并两个不同的表。

Pandas 中的散点矩阵

发布时间:2024/04/23 浏览次数:105 分类:Python

本教程演示了如何使用 scatter_matrix 函数在 Pandas 中创建散点图。

扫一扫阅读全部技术教程

社交账号
  • https://www.github.com/onmpw
  • qq:1244347461

最新推荐

教程更新

热门标签

扫码一下
查看教程更方便