Pandas 丢掉 DataFrame 中重复的行
本教程介绍了如何使用 DataFrame.drop_duplicates()
方法从 Pandas DataFrame 中删除所有重复的行。
DataFrame.drop_duplicates()
语法
DataFrame.drop_duplicates(subset=None, keep="first", inplace=False, ignore_index=False)
它返回一个 DataFrame,删除 DataFrame 中所有重复的行。
使用 DataFrame.drop_duplicates()
方法删除重复的行
import pandas as pd
df_with_duplicates = pd.DataFrame(
{
"Id": [302, 504, 708, 103, 303, 302],
"Name": ["Watch", "Camera", "Phone", "Shoes", "Watch", "Watch"],
"Cost": ["300", "400", "350", "100", "300", "300"],
}
)
df_without_duplicates = df_with_duplicates.drop_duplicates()
print("DataFrame with duplicates:")
print(df_with_duplicates, "\n")
print("DataFrame without duplicates:")
print(df_without_duplicates, "\n")
输出:
DataFrame with duplicates:
Id Name Cost
0 302 Watch 300
1 504 Camera 400
2 708 Phone 350
3 103 Shoes 100
4 303 Watch 300
5 302 Watch 300
DataFrame without duplicates:
Id Name Cost
0 302 Watch 300
1 504 Camera 400
2 708 Phone 350
3 103 Shoes 100
4 303 Watch 300
它会删除所有列的所有值都相同的行。默认情况下,DataFrame 中每一列都有相同值的行才被认为是重复的。在 df_with_duplicates
DataFrame 中,第一行和第五行对所有列都有相同的值,所以第五行被删除。
设置 subset
参数以仅基于特定列删除重复项
import pandas as pd
df_with_duplicates = pd.DataFrame(
{
"Id": [302, 504, 708, 103, 303, 302],
"Name": ["Watch", "Camera", "Phone", "Shoes", "Watch", "Watch"],
"Cost": ["300", "400", "350", "100", "300", "300"],
}
)
df_without_duplicates = df_with_duplicates.drop_duplicates(subset=["Name"])
print("DataFrame with duplicates:")
print(df_with_duplicates, "\n")
print("DataFrame without duplicates:")
print(df_without_duplicates, "\n")
输出:
DataFrame with duplicates:
Id Name Cost
0 302 Watch 300
1 504 Camera 400
2 708 Phone 350
3 103 Shoes 100
4 303 Watch 300
5 302 Watch 300
DataFrame without duplicates:
Id Name Cost
0 302 Watch 300
1 504 Camera 400
2 708 Phone 350
3 103 Shoes 100
在这里,我们将 Name
作为 subset
参数传给 drop_duplicates()
方法。第四行和第五行被删除,因为它们的 Name
列的值与第一列相同。
在 drop_duplicates()
方法中设置 keep='last'
import pandas as pd
df_with_duplicates = pd.DataFrame(
{
"Id": [302, 504, 708, 103, 303, 302],
"Name": ["Watch", "Camera", "Phone", "Shoes", "Watch", "Watch"],
"Cost": ["300", "400", "350", "100", "300", "300"],
}
)
df_without_duplicates = df_with_duplicates.drop_duplicates(subset=["Name"], keep="last")
print("DataFrame with duplicates:")
print(df_with_duplicates, "\n")
print("DataFrame without duplicates:")
print(df_without_duplicates, "\n")
输出:
DataFrame with duplicates:
Id Name Cost
0 302 Watch 300
1 504 Camera 400
2 708 Phone 350
3 103 Shoes 100
4 303 Watch 300
5 302 Watch 300
DataFrame without duplicates:
Id Name Cost
1 504 Camera 400
2 708 Phone 350
3 103 Shoes 100
5 302 Watch 300
它删除了所有的行,除了最后一行与 Name
列值相同的行。
我们设置 keep=False
来删除任何一列中具有相同值的所有行。
import pandas as pd
df_with_duplicates = pd.DataFrame(
{
"Id": [302, 504, 708, 103, 303, 302],
"Name": ["Watch", "Camera", "Phone", "Shoes", "Watch", "Watch"],
"Cost": ["300", "400", "350", "100", "300", "300"],
}
)
df_without_duplicates = df_with_duplicates.drop_duplicates(subset=["Name"], keep=False)
print("DataFrame with duplicates:")
print(df_with_duplicates, "\n")
print("DataFrame without duplicates:")
print(df_without_duplicates, "\n")
输出:
DataFrame with duplicates:
Id Name Cost
0 302 Watch 300
1 504 Camera 400
2 708 Phone 350
3 103 Shoes 100
4 303 Watch 300
5 302 Watch 300
DataFrame without duplicates:
Id Name Cost
1 504 Camera 400
2 708 Phone 350
3 103 Shoes 100
它删除了第一、五、六行,因为它们的 Name
列都有相同的值。
相关文章
Pandas DataFrame DataFrame.shift() 函数
发布时间:2024/04/24 浏览次数:133 分类:Python
-
DataFrame.shift() 函数是将 DataFrame 的索引按指定的周期数进行移位。
Python pandas.pivot_table() 函数
发布时间:2024/04/24 浏览次数:82 分类:Python
-
Python Pandas pivot_table()函数通过对数据进行汇总,避免了数据的重复。
Pandas read_csv()函数
发布时间:2024/04/24 浏览次数:254 分类:Python
-
Pandas read_csv()函数将指定的逗号分隔值(csv)文件读取到 DataFrame 中。
Pandas 多列合并
发布时间:2024/04/24 浏览次数:628 分类:Python
-
本教程介绍了如何在 Pandas 中使用 DataFrame.merge()方法合并两个 DataFrames。
Pandas loc vs iloc
发布时间:2024/04/24 浏览次数:837 分类:Python
-
本教程介绍了如何使用 Python 中的 loc 和 iloc 从 Pandas DataFrame 中过滤数据。
在 Python 中将 Pandas 系列的日期时间转换为字符串
发布时间:2024/04/24 浏览次数:894 分类:Python
-
了解如何在 Python 中将 Pandas 系列日期时间转换为字符串