Pandas 丢掉 DataFrame 中重复的行
本教程介绍了如何使用 DataFrame.drop_duplicates()
方法从 Pandas DataFrame 中删除所有重复的行。
DataFrame.drop_duplicates()
语法
DataFrame.drop_duplicates(subset=None, keep="first", inplace=False, ignore_index=False)
它返回一个 DataFrame,删除 DataFrame 中所有重复的行。
使用 DataFrame.drop_duplicates()
方法删除重复的行
import pandas as pd
df_with_duplicates = pd.DataFrame(
{
"Id": [302, 504, 708, 103, 303, 302],
"Name": ["Watch", "Camera", "Phone", "Shoes", "Watch", "Watch"],
"Cost": ["300", "400", "350", "100", "300", "300"],
}
)
df_without_duplicates = df_with_duplicates.drop_duplicates()
print("DataFrame with duplicates:")
print(df_with_duplicates, "\n")
print("DataFrame without duplicates:")
print(df_without_duplicates, "\n")
输出:
DataFrame with duplicates:
Id Name Cost
0 302 Watch 300
1 504 Camera 400
2 708 Phone 350
3 103 Shoes 100
4 303 Watch 300
5 302 Watch 300
DataFrame without duplicates:
Id Name Cost
0 302 Watch 300
1 504 Camera 400
2 708 Phone 350
3 103 Shoes 100
4 303 Watch 300
它会删除所有列的所有值都相同的行。默认情况下,DataFrame 中每一列都有相同值的行才被认为是重复的。在 df_with_duplicates
DataFrame 中,第一行和第五行对所有列都有相同的值,所以第五行被删除。
设置 subset
参数以仅基于特定列删除重复项
import pandas as pd
df_with_duplicates = pd.DataFrame(
{
"Id": [302, 504, 708, 103, 303, 302],
"Name": ["Watch", "Camera", "Phone", "Shoes", "Watch", "Watch"],
"Cost": ["300", "400", "350", "100", "300", "300"],
}
)
df_without_duplicates = df_with_duplicates.drop_duplicates(subset=["Name"])
print("DataFrame with duplicates:")
print(df_with_duplicates, "\n")
print("DataFrame without duplicates:")
print(df_without_duplicates, "\n")
输出:
DataFrame with duplicates:
Id Name Cost
0 302 Watch 300
1 504 Camera 400
2 708 Phone 350
3 103 Shoes 100
4 303 Watch 300
5 302 Watch 300
DataFrame without duplicates:
Id Name Cost
0 302 Watch 300
1 504 Camera 400
2 708 Phone 350
3 103 Shoes 100
在这里,我们将 Name
作为 subset
参数传给 drop_duplicates()
方法。第四行和第五行被删除,因为它们的 Name
列的值与第一列相同。
在 drop_duplicates()
方法中设置 keep='last'
import pandas as pd
df_with_duplicates = pd.DataFrame(
{
"Id": [302, 504, 708, 103, 303, 302],
"Name": ["Watch", "Camera", "Phone", "Shoes", "Watch", "Watch"],
"Cost": ["300", "400", "350", "100", "300", "300"],
}
)
df_without_duplicates = df_with_duplicates.drop_duplicates(subset=["Name"], keep="last")
print("DataFrame with duplicates:")
print(df_with_duplicates, "\n")
print("DataFrame without duplicates:")
print(df_without_duplicates, "\n")
输出:
DataFrame with duplicates:
Id Name Cost
0 302 Watch 300
1 504 Camera 400
2 708 Phone 350
3 103 Shoes 100
4 303 Watch 300
5 302 Watch 300
DataFrame without duplicates:
Id Name Cost
1 504 Camera 400
2 708 Phone 350
3 103 Shoes 100
5 302 Watch 300
它删除了所有的行,除了最后一行与 Name
列值相同的行。
我们设置 keep=False
来删除任何一列中具有相同值的所有行。
import pandas as pd
df_with_duplicates = pd.DataFrame(
{
"Id": [302, 504, 708, 103, 303, 302],
"Name": ["Watch", "Camera", "Phone", "Shoes", "Watch", "Watch"],
"Cost": ["300", "400", "350", "100", "300", "300"],
}
)
df_without_duplicates = df_with_duplicates.drop_duplicates(subset=["Name"], keep=False)
print("DataFrame with duplicates:")
print(df_with_duplicates, "\n")
print("DataFrame without duplicates:")
print(df_without_duplicates, "\n")
输出:
DataFrame with duplicates:
Id Name Cost
0 302 Watch 300
1 504 Camera 400
2 708 Phone 350
3 103 Shoes 100
4 303 Watch 300
5 302 Watch 300
DataFrame without duplicates:
Id Name Cost
1 504 Camera 400
2 708 Phone 350
3 103 Shoes 100
它删除了第一、五、六行,因为它们的 Name
列都有相同的值。
相关文章
计算 Pandas DataFrame 中的方差
发布时间:2024/04/23 浏览次数:181 分类:Python
-
本教程演示了如何计算 Python Pandas DataFrame 中的方差。
查找已安装的 Pandas 版本
发布时间:2024/04/23 浏览次数:116 分类:Python
-
在本文中,我们将介绍如何查找已安装的 Python Pandas 库版本。我们使用了内置版本功能和其他功能来显示其他已安装版本的详细信息。
Pandas 中的 Groupby 索引列
发布时间:2024/04/23 浏览次数:79 分类:Python
-
本教程将介绍如何使用 Python Pandas Groupby 对数据进行分类,然后将函数应用于类别。通过示例使用 groupby() 函数按 Pandas 中的多个索引列进行分组。
Pandas 通过 Groupby 应用变换
发布时间:2024/04/23 浏览次数:180 分类:Python
-
本教程演示了 Pandas Python 中与 groupby 方法一起使用的 apply 和 transform 之间的区别。