迹忆客 专注技术分享

当前位置:主页 > 学无止境 > 编程语言 > Python >

Pandas 中 axis 的含义

作者:迹忆客 最近更新:2024/04/23 浏览次数:

本教程解释了在 DataFrames 和 Series 等 Pandas 对象的各种方法中使用的 axis 参数的含义。

import pandas as pd

empl_df = pd.DataFrame(
    {
        "Name": ["Jon", "Willy", "Mike", "Luna", "Sam", "Aliza"],
        "Age": [30, 33, 35, 30, 30, 31],
        "Weight(KG)": [75, 75, 80, 70, 73, 70],
        "Height(meters)": [1.7, 1.7, 1.85, 1.75, 1.8, 1.75],
        "Salary($)": [3300, 3500, 4000, 3050, 3500, 3700],
    }
)

print(empl_df)

输出:

    Name  Age  Weight(KG)  Height(meters)  Salary($)
0    Jon   30          75            1.70       3300
1  Willy   33          75            1.70       3500
2   Mike   35          80            1.85       4000
3   Luna   30          70            1.75       3050
4    Sam   30          73            1.80       3500
5  Aliza   31          70            1.75       3700

我们使用 DataFrame empl_df 来解释如何在 Pandas 方法中使用 axis 参数。


在 Pandas 方法中使用 axis 参数

axis 参数指定在 DataFrame 中应用特定方法或函数的方向。axis=0 代表函数是列式应用,axis=1 表示函数是行式应用在 DataFrame 上。

如果我们按列应用函数,我们将得到一个单行的结果;如果按行应用函数,我们将得到一个单列的 DataFrame。

示例:在 Pandas 方法中使用 axis=0

import pandas as pd

empl_df = pd.DataFrame(
    {
        "Name": ["Jon", "Willy", "Mike", "Luna", "Sam", "Aliza"],
        "Age": [30, 33, 35, 30, 30, 31],
        "Weight(KG)": [75, 75, 80, 70, 73, 70],
        "Height(meters)": [1.7, 1.7, 1.85, 1.75, 1.8, 1.75],
        "Salary($)": [3300, 3500, 4000, 3050, 3500, 3700],
    }
)
print("The Employee DataFrame is:")
print(empl_df, "\n")

print("The DataFrame with mean values of each column is:")
print(empl_df.mean(axis=0))

输出:

The Employee DataFrame is:
    Name  Age  Weight(KG)  Height(meters)  Salary($)
0    Jon   30          75            1.70       3300
1  Willy   33          75            1.70       3500
2   Mike   35          80            1.85       4000
3   Luna   30          70            1.75       3050
4    Sam   30          73            1.80       3500
5  Aliza   31          70            1.75       3700

The DataFrame with mean values of each column is:
Age                 31.500000
Weight(KG)          73.833333
Height(meters)       1.758333
Salary($)         3508.333333
dtype: float64

它计算 DataFrame empl_df 的按列平均值。平均值只计算有数值的列。

如果我们设置 axis=0,它将通过对该列的行值进行平均来计算每列的平均值。

例子在 Pandas 方法中使用 axis=1

import pandas as pd

empl_df = pd.DataFrame(
    {
        "Name": ["Jon", "Willy", "Mike", "Luna", "Sam", "Aliza"],
        "Age": [30, 33, 35, 30, 30, 31],
        "Weight(KG)": [75, 75, 80, 70, 73, 70],
        "Height(meters)": [1.7, 1.7, 1.85, 1.75, 1.8, 1.75],
        "Salary($)": [3300, 3500, 4000, 3050, 3500, 3700],
    }
)
print("The Employee DataFrame is:")
print(empl_df, "\n")

print("The DataFrame with mean values of each row is:")
print(empl_df.mean(axis=1))

输出:

The Employee DataFrame is:
    Name  Age  Weight(KG)  Height(meters)  Salary($)
0    Jon   30          75            1.70       3300
1  Willy   33          75            1.70       3500
2   Mike   35          80            1.85       4000
3   Luna   30          70            1.75       3050
4    Sam   30          73            1.80       3500
5  Aliza   31          70            1.75       3700

The DataFrame with mean values of each row is:
0     851.6750
1     902.4250
2    1029.2125
3     787.9375
4     901.2000
5     950.6875
dtype: float64

它计算 DataFrame empl_df 的行平均值,换句话说,它将计算每行的平均值,通过对该行的数值类型的列值进行平均。我们将在最后得到一个单列的每行平均值。

转载请发邮件至 1244347461@qq.com 进行申请,经作者同意之后,转载请以链接形式注明出处

本文地址:

相关文章

查找已安装的 Pandas 版本

发布时间:2024/04/23 浏览次数:116 分类:Python

在本文中,我们将介绍如何查找已安装的 Python Pandas 库版本。我们使用了内置版本功能和其他功能来显示其他已安装版本的详细信息。

Pandas 中的 Groupby 索引列

发布时间:2024/04/23 浏览次数:79 分类:Python

本教程将介绍如何使用 Python Pandas Groupby 对数据进行分类,然后将函数应用于类别。通过示例使用 groupby() 函数按 Pandas 中的多个索引列进行分组。

Pandas 通过 Groupby 应用变换

发布时间:2024/04/23 浏览次数:180 分类:Python

本教程演示了 Pandas Python 中与 groupby 方法一起使用的 apply 和 transform 之间的区别。

Pandas Vlookup

发布时间:2024/04/23 浏览次数:83 分类:Python

本教程演示如何在 Python 中使用 Pandas 通过不同的技术合并两个不同的表。

Pandas 中的散点矩阵

发布时间:2024/04/23 浏览次数:105 分类:Python

本教程演示了如何使用 scatter_matrix 函数在 Pandas 中创建散点图。

扫一扫阅读全部技术教程

社交账号
  • https://www.github.com/onmpw
  • qq:1244347461

最新推荐

教程更新

热门标签

扫码一下
查看教程更方便