如何获得 Pandas 列中元素总和
我们将介绍如何获取 Pandas DataFrame 列的元素总和,以及使用 groupby
计算累积和的方法,以及基于其他列值数据的条件来得到列和的方法。
获取 Pandas DataFrame
列和的方法
首先,我们使用 NumPy
库创建一个随机数组,然后使用 sum()
函数获取每个列的总和。
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.randint(0, 10, size=(10, 4)), columns=list("1234"))
print(df)
Total = df["1"].sum()
print("Column 1 sum:", Total)
Total = df["2"].sum()
print("Column 2 sum:", Total)
Total = df["3"].sum()
print("Column 3 sum:", Total)
Total = df["4"].sum()
print("Column 4 sum:", Total)
如果运行此代码,你将获得以下输出(你的情况下值可能不同),
1 2 3 4
0 2 2 3 8
1 9 4 3 1
2 8 5 6 0
3 9 5 7 4
4 2 7 3 7
5 9 4 1 3
6 6 7 7 3
7 0 4 2 8
8 0 6 6 4
9 5 8 7 2
Column 1 sum: 50
Column 2 sum: 52
Column 3 sum: 45
Column 4 sum: 40
与 groupby
的累加总和
我们可以使用 groupby
方法来获得累计和。考虑以下带有 DataFrame
,Fruit
和 Sale
列的 DataFrame
:
import pandas as pd
df = pd.DataFrame(
{
"Date": ["08/09/2018", "10/09/2018", "08/09/2018", "10/09/2018"],
"Fruit": ["Apple", "Apple", "Banana", "Banana"],
"Sale": [34, 12, 22, 27],
}
)
如果我们要计算每个水果的累计销售总额,对于每个日期我们可以这样计算,
import pandas as pd
df = pd.DataFrame(
{
"Date": ["08/09/2018", "10/09/2018", "08/09/2018", "10/09/2018"],
"Fruit": ["Apple", "Apple", "Banana", "Banana"],
"Sale": [34, 12, 22, 27],
}
)
print(df.groupby(by=["Fruit", "Date"]).sum().groupby(level=[0]).cumsum())
运行上述代码后,我们将获得以下输出,该输出显示每个日期的水果累积总和:
Fruit Date Sale
Apple 08/09/2018 34
10/09/2018 46
Banana 08/09/2018 22
10/09/2018 49
基于其他列值的条件获取列总和的方法
此方法提供了在给定条件为 True
时获取总和的功能,以及在条件为 False
时用给定值替换总和的功能。考虑以下代码
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.randn(5, 3), columns=list("xyz"))
df["sum"] = df.loc[df["x"] > 0, ["x", "y"]].sum(axis=1)
df["sum"].fillna(0, inplace=True)
print(df)
在上面的代码中,我们将新列总和添加到 DataFrame
中,这是第一列 ['x','y']
的和,如果 ['x']
大于 1,否则我们将和替换为 0
。
运行代码后,我们将获得以下输出(根据你的情况,值可能会更改)。
x y z sum
0 -1.067619 1.053494 0.179490 0.000000
1 -0.349935 0.531465 -1.350914 0.000000
2 -1.650904 1.534314 1.773287 0.000000
3 2.486195 0.800890 -0.132991 3.287085
4 1.581747 -0.667217 -0.182038 0.914530
相关文章
Pandas DataFrame DataFrame.append() 函数
发布时间:2024/04/22 浏览次数:92 分类:Python
-
Pandas 中的 append 方法将两个不同 DataFrame 的行合并,并返回新的 DataFrame。
Pandas DataFrame DataFrame.apply() 函数
发布时间:2024/04/22 浏览次数:172 分类:Python
-
Pandas DataFrame apply()函数将输入的函数应用到 Pandas DataFrame 的每一个沿行或沿列的元素。
Pandas DataFrame DataFrame.aggregate() 函数
发布时间:2024/04/22 浏览次数:98 分类:Python
-
Pandas DataFrame aggregate()函数对 DataFrame 的列或行进行聚合。
Pandas DataFrame DataFrame.to_excel() 函数
发布时间:2024/04/22 浏览次数:68 分类:Python
-
DataFrame.to_excel()函数将 DataFrame 数据转储到 excel 文件中,单张或多张。
Pandas DataFrame DataFrame.sort_values() 函数
发布时间:2024/04/22 浏览次数:70 分类:Python
-
DataFrame sort_values()函数对给定的 DataFrame 按升序或降序进行排序。
Pandas DataFrame DataFrame.set_index() 函数
发布时间:2024/04/22 浏览次数:69 分类:Python
-
Pandas DataFrame 的 set_index 方法用于将列或数组设置为 DataFrame 的索引。
Pandas DataFrame DataFrame.sample() 函数
发布时间:2024/04/22 浏览次数:146 分类:Python
-
Pandas DataFrame sample()函数生成一个 DataFrame 的随机行或列的样本。
Pandas DataFrame DataFrame.reindex() 函数
发布时间:2024/04/22 浏览次数:60 分类:Python
-
Pandas DataFrame reindex()函数可以改变 DataFrame 的行或列的索引。