迹忆客 专注技术分享

当前位置:主页 > 学无止境 > 编程语言 > Python >

将 Pandas DataFrame 转换为 JSON

作者:迹忆客 最近更新:2024/04/21 浏览次数:

JSON 是 JavaScript Object Notation 的缩写,它是基于 JavaScript 中对象的格式,是一种表示结构化数据的编码技术。它是基于 JavaScript 中对象的格式,是一种表示结构化数据的编码技术。现在它被广泛使用,特别是在服务器和 Web 应用程序之间共享数据。

我们将在本文中介绍如何将 DataFrame 转换为 JSON 字符串。

我们将使用以下 DataFrame。

import pandas as pd

df = pd.DataFrame(
    [["Jay", 16, "BBA"], ["Jack", 19, "BTech"], ["Mark", 18, "BSc"]],
    columns=["Name", "Age", "Course"],
)

print(df)

输出:

   Name  Age Course
0   Jay   16    BBA
1  Jack   19  BTech
2  Mark   18    BSc

Pandas DataFrame 有一个方法 dataframe.to_json(),它可以将 DataFrame 转换为 JSON 字符串或存储为外部 JSON 文件。最终的 JSON 格式取决于 orient 参数的值,默认情况下是'columns',但也可以指定为'records''index''split''table''values'

所有的格式将在下面介绍。


orient = 'columns'

import pandas as pd

df = pd.DataFrame(
    [["Jay", 16, "BBA"], ["Jack", 19, "BTech"], ["Mark", 18, "BSc"]],
    columns=["Name", "Age", "Course"],
)

js = df.to_json(orient="columns")

print(js)

输出:

{"Name":{"0":"Jay","1":"Jack","2":"Mark"},
 "Age":{"0":16,"1":19,"2":18},
 "Course":{"0":"BBA","1":"BTech","2":"BSc"}}

orient = 'records'

import pandas as pd

df = pd.DataFrame(
    [["Jay", 16, "BBA"], ["Jack", 19, "BTech"], ["Mark", 18, "BSc"]],
    columns=["Name", "Age", "Course"],
)

js = df.to_json(orient="records")

print(js)

输出:

[{"Name":"Jay","Age":16,"Course":"BBA"},{"Name":"Jack","Age":19,"Course":"BTech"},{"Name":"Mark","Age":18,"Course":"BSc"}]

orient = 'index'

import pandas as pd

df = pd.DataFrame(
    [["Jay", 16, "BBA"], ["Jack", 19, "BTech"], ["Mark", 18, "BSc"]],
    columns=["Name", "Age", "Course"],
)

js = df.to_json(orient="index")

print(js)

输出:

{"0":{"Name":"Jay","Age":16,"Course":"BBA"},
 "1":{"Name":"Jack","Age":19,"Course":"BTech"},
 "2":{"Name":"Mark","Age":18,"Course":"BSc"}}

orient = 'split'

import pandas as pd

df = pd.DataFrame(
    [["Jay", 16, "BBA"], ["Jack", 19, "BTech"], ["Mark", 18, "BSc"]],
    columns=["Name", "Age", "Course"],
)

js = df.to_json(orient="split")

print(js)

输出:

{"columns":["Name","Age","Course"],
 "index":[0,1,2],
 "data":[["Jay",16,"BBA"],["Jack",19,"BTech"],["Mark",18,"BSc"]]}

orient = 'table'

import pandas as pd

df = pd.DataFrame(
    [["Jay", 16, "BBA"], ["Jack", 19, "BTech"], ["Mark", 18, "BSc"]],
    columns=["Name", "Age", "Course"],
)

js = df.to_json(orient="table")

print(js)

输出:

{"schema": {"fields":[{"name":"index","type":"integer"},{"name":"Name","type":"string"},{"name":"Age","type":"integer"},{"name":"Course","type":"string"}],"primaryKey":["index"],"pandas_version":"0.20.0"}, "data": [{"index":0,"Name":"Jay","Age":16,"Course":"BBA"},{"index":1,"Name":"Jack","Age":19,"Course":"BTech"},{"index":2,"Name":"Mark","Age":18,"Course":"BSc"}]}

如前所述,我们还可以直接将 JSON 输出到外部文件。它可以通过在 dataframe.to_json() 函数中提供文件的路径来实现,如下所示。

import pandas as pd

df = pd.DataFrame(
    [["Jay", 16, "BBA"], ["Jack", 19, "BTech"], ["Mark", 18, "BSc"]],
    columns=["Name", "Age", "Course"],
)

df.to_json("path\example.json", orient="table")

上面的代码将 JSON 文件导出到指定的路径。

转载请发邮件至 1244347461@qq.com 进行申请,经作者同意之后,转载请以链接形式注明出处

本文地址:

相关文章

Pandas read_csv()函数

发布时间:2024/04/24 浏览次数:254 分类:Python

Pandas read_csv()函数将指定的逗号分隔值(csv)文件读取到 DataFrame 中。

Pandas 追加数据到 CSV 中

发布时间:2024/04/24 浏览次数:352 分类:Python

本教程演示了如何在追加模式下使用 to_csv()向现有的 CSV 文件添加数据。

Pandas 多列合并

发布时间:2024/04/24 浏览次数:628 分类:Python

本教程介绍了如何在 Pandas 中使用 DataFrame.merge()方法合并两个 DataFrames。

Pandas loc vs iloc

发布时间:2024/04/24 浏览次数:837 分类:Python

本教程介绍了如何使用 Python 中的 loc 和 iloc 从 Pandas DataFrame 中过滤数据。

扫一扫阅读全部技术教程

社交账号
  • https://www.github.com/onmpw
  • qq:1244347461

最新推荐

教程更新

热门标签

扫码一下
查看教程更方便