迹忆客 专注技术分享

当前位置:主页 > 学无止境 > 编程语言 > Python >

从 NumPy 数组中删除 Nan 值

作者:迹忆客 最近更新:2024/03/12 浏览次数:

本文将讨论一些内置的 NumPy 函数,你可以使用这些函数删除 nan 值。


在 NumPy 中使用 logical_not()isnan() 方法删除 Nan 值

logical_not()用于将逻辑 NOT 应用于数组的元素。isnan() 是一个布尔函数,用于检查元素是否为 nan。

使用 isnan() 函数,我们可以创建一个布尔数组,该数组的所有非 nan 值均具有 False,而所有 nan 值均具有 True。接下来,使用 logical_not() 函数,我们可以将 True 转换为 False,反之亦然。

最后,使用布尔索引,我们可以从原始 NumPy 数组中过滤所有非 nan 值。所有以 True 作为其值的索引将用于过滤 NumPy 数组。

要深入了解这些函数,请分别参考其官方文档,这里和这里。

请参考以下代码片段以获取解决方案。

import numpy as np

myArray = np.array([1, 2, 3, np.nan, np.nan, 4, 5, 6, np.nan, 7, 8, 9, np.nan])
output1 = myArray[np.logical_not(np.isnan(myArray))]  # Line 1
output2 = myArray[~np.isnan(myArray)]  # Line 2
print(myArray)
print(output1)
print(output2)

输出:

[ 1.  2.  3. nan nan  4.  5.  6. nan  7.  8.  9. nan]
[1. 2. 3. 4. 5. 6. 7. 8. 9.]
[1. 2. 3. 4. 5. 6. 7. 8. 9.]

Line 2Line 1 的简化版本。


在 NumPy 中使用 isfinite() 方法删除 Nan 值

顾名思义,isfinite() 函数是一个布尔函数,用于检查元素是否为有限值。它还可以检查数组中的有限值,并为该数组返回一个布尔数组。布尔数组将为所有 nan 值存储 False,为所有有限值存储 True

我们将使用此函数为目标数组检索一个布尔数组。使用布尔索引,我们将过滤所有有限值。同样,如上所述,具有 True 值的索引将用于过滤数组。

这是示例代码。

import numpy as np

myArray1 = np.array([1, 2, 3, np.nan, np.nan, 4, 5, 6, np.nan, 7, 8, 9, np.nan])
myArray2 = np.array([np.nan, np.nan, np.nan, np.nan, np.nan, np.nan])
myArray3 = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
output1 = myArray1[np.isfinite(myArray1)]
output2 = myArray2[np.isfinite(myArray2)]
output3 = myArray3[np.isfinite(myArray3)]
print(myArray1)
print(myArray2)
print(myArray3)
print(output1)
print(output2)
print(output3)

输出:

[ 1.  2.  3. nan nan  4.  5.  6. nan  7.  8.  9. nan]
[nan nan nan nan nan nan]
[ 1  2  3  4  5  6  7  8  9 10]
[1. 2. 3. 4. 5. 6. 7. 8. 9.]
[]
[ 1  2  3  4  5  6  7  8  9 10]

要了解有关此函数的更多信息,请参考官方文档


使用 math.isnan 方法删除 Nan 值

除了这两个 NumPy 解决方案之外,还有两种其他删除 nan 值的方法。这两种方式涉及 math 库中的 isnan() 函数和 pandas 库中的 isnull 函数。这两个函数都会检查元素是否为 nan,并返回布尔值结果。

这是使用 isnan() 方法的解决方案。

import numpy as np
import math

myArray1 = np.array([1, 2, 3, np.nan, np.nan, 4, 5, 6, np.nan, 7, 8, 9, np.nan])
myArray2 = np.array([np.nan, np.nan, np.nan, np.nan, np.nan, np.nan])
myArray3 = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
booleanArray1 = [not math.isnan(number) for number in myArray1]
booleanArray2 = [not math.isnan(number) for number in myArray2]
booleanArray3 = [not math.isnan(number) for number in myArray3]
print(myArray1)
print(myArray2)
print(myArray3)
print(myArray1[booleanArray1])
print(myArray2[booleanArray2])
print(myArray3[booleanArray3])

输出:

[ 1.  2.  3. nan nan  4.  5.  6. nan  7.  8.  9. nan]
[nan nan nan nan nan nan]
[ 1  2  3  4  5  6  7  8  9 10]
[1. 2. 3. 4. 5. 6. 7. 8. 9.]
[]
[ 1  2  3  4  5  6  7  8  9 10]

使用 pandas.isnull 方法删除 Nan 值

以下是使用 pandas 中的 isnull() 方法的解决方案。

import numpy as np
import pandas as pd

myArray1 = np.array([1, 2, 3, np.nan, np.nan, 4, 5, 6, np.nan, 7, 8, 9, np.nan])
myArray2 = np.array([np.nan, np.nan, np.nan, np.nan, np.nan, np.nan])
myArray3 = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
booleanArray1 = [not pd.isnull(number) for number in myArray1]
booleanArray2 = [not pd.isnull(number) for number in myArray2]
booleanArray3 = [not pd.isnull(number) for number in myArray3]
print(myArray1)
print(myArray2)
print(myArray3)
print(myArray1[booleanArray1])
print(myArray2[booleanArray2])
print(myArray3[booleanArray3])
print(myArray1[~pd.isnull(myArray1)])  # Line 1
print(myArray2[~pd.isnull(myArray2)])  # Line 2
print(myArray3[~pd.isnull(myArray3)])  # Line 3

输出:

[ 1.  2.  3. nan nan  4.  5.  6. nan  7.  8.  9. nan]
[nan nan nan nan nan nan]
[ 1  2  3  4  5  6  7  8  9 10]
[1. 2. 3. 4. 5. 6. 7. 8. 9.]
[]
[ 1  2  3  4  5  6  7  8  9 10]
[1. 2. 3. 4. 5. 6. 7. 8. 9.]
[]
[ 1  2  3  4  5  6  7  8  9 10]

转载请发邮件至 1244347461@qq.com 进行申请,经作者同意之后,转载请以链接形式注明出处

本文地址:

相关文章

在 Python 中将 Tensor 转换为 NumPy 数组

发布时间:2024/03/12 浏览次数:118 分类:Python

在 Python 中,可以使用 3 种主要方法将 Tensor 转换为 NumPy 数组:Tensor.numpy()函数,Tensor.eval()函数和 TensorFlow.Session()函数。

将 PIL 图像转换为 NumPy 数组

发布时间:2024/03/12 浏览次数:153 分类:Python

在 Python 中,可以使用两种主要方法将 PIL 图像转换为 3 维 NumPy 数组:numpy.array()函数和 numpy.asarray()函数。

Python NumPy 中的逐元素除法

发布时间:2024/03/12 浏览次数:177 分类:Python

有两种主要方法可用于在 Python 中对 NumPy 数组执行逐元素除法,即 numpy.divide() 函数和 / 运算符。

如何在 Matplotlib Pyplot 中显示网格

发布时间:2024/02/04 浏览次数:128 分类:Python

本文演示了如何在 Python Matplotlib 中在一个图上画一个网格。使用 grid()函数来绘制网格,并解释了如何改变网格颜色和线条类型。

扫一扫阅读全部技术教程

社交账号
  • https://www.github.com/onmpw
  • qq:1244347461

最新推荐

教程更新

热门标签

扫码一下
查看教程更方便