迹忆客 专注技术分享

当前位置:主页 > 学无止境 > 编程语言 > Python >

在 Python 中实现低通滤波器

作者:迹忆客 最近更新:2023/12/17 浏览次数:

低通滤波器是信号处理基础中的一个术语,经常用于过滤信号以获得更准确的结果。

本教程将讨论低通滤波器以及如何在 Python 中创建和实现它。

低通滤波器用于使频率低于截止频率的信号通过,该频率保持用户指定的某个值。所有频率超过截止频率的信号都被削弱。


在 Python 中使用 Scipy 创建低通巴特沃斯滤波器

在 Python 中,我们可以利用 SciPy 库中的函数来创建低通滤波器。SciPy 是 Scientific Python 的缩写,是一个用于提供执行信号处理、优化和统计的函数的库。该库还使用下面的 NumPy 库。

现实世界中存在几个低通滤波器。但是,我们将在 Python 中创建一个 Butterworth 低通滤波器,因为它具有最大平坦的频率,这意味着通带中没有波纹。这使其成为最流行和最常用的低通滤波器之一。

要在 Python 中成功实现此方法,我们首先需要将 NumPySciPyMatplotlib 模块导入 Python 代码。

以下代码使用 SciPy 模块在 Python 中创建低通巴特沃斯滤波器。

import numpy as np
from scipy.signal import butter, lfilter, freqz
import matplotlib.pyplot as plt


def butter_lowpass(cutoff, fs, order=5):
    nyq = 0.5 * fs
    normal_cutoff = cutoff / nyq
    b, a = butter(order, normal_cutoff, btype="low", analog=False)
    return b, a


def butter_lowpass_filter(data, cutoff, fs, order=5):
    b, a = butter_lowpass(cutoff, fs, order=order)
    y = lfilter(b, a, data)
    return y


# Setting standard filter requirements.
order = 6
fs = 30.0
cutoff = 3.667

b, a = butter_lowpass(cutoff, fs, order)

# Plotting the frequency response.
w, h = freqz(b, a, worN=8000)
plt.subplot(2, 1, 1)
plt.plot(0.5 * fs * w / np.pi, np.abs(h), "b")
plt.plot(cutoff, 0.5 * np.sqrt(2), "ko")
plt.axvline(cutoff, color="k")
plt.xlim(0, 0.5 * fs)
plt.title("Lowpass Filter Frequency Response")
plt.xlabel("Frequency [Hz]")
plt.grid()


# Creating the data for filteration
T = 5.0  # value taken in seconds
n = int(T * fs)  # indicates total samples
t = np.linspace(0, T, n, endpoint=False)

data = (
    np.sin(1.2 * 2 * np.pi * t)
    + 1.5 * np.cos(9 * 2 * np.pi * t)
    + 0.5 * np.sin(12.0 * 2 * np.pi * t)
)

# Filtering and plotting
y = butter_lowpass_filter(data, cutoff, fs, order)

plt.subplot(2, 1, 2)
plt.plot(t, data, "b-", label="data")
plt.plot(t, y, "g-", linewidth=2, label="filtered data")
plt.xlabel("Time [sec]")
plt.grid()
plt.legend()

plt.subplots_adjust(hspace=0.35)
plt.show()

Python 低通滤波器

转载请发邮件至 1244347461@qq.com 进行申请,经作者同意之后,转载请以链接形式注明出处

本文地址:

相关文章

Pandas read_csv()函数

发布时间:2024/04/24 浏览次数:254 分类:Python

Pandas read_csv()函数将指定的逗号分隔值(csv)文件读取到 DataFrame 中。

Pandas 追加数据到 CSV 中

发布时间:2024/04/24 浏览次数:352 分类:Python

本教程演示了如何在追加模式下使用 to_csv()向现有的 CSV 文件添加数据。

Pandas 多列合并

发布时间:2024/04/24 浏览次数:628 分类:Python

本教程介绍了如何在 Pandas 中使用 DataFrame.merge()方法合并两个 DataFrames。

Pandas loc vs iloc

发布时间:2024/04/24 浏览次数:837 分类:Python

本教程介绍了如何使用 Python 中的 loc 和 iloc 从 Pandas DataFrame 中过滤数据。

扫一扫阅读全部技术教程

社交账号
  • https://www.github.com/onmpw
  • qq:1244347461

最新推荐

教程更新

热门标签

扫码一下
查看教程更方便