将 Pandas Series 转换为 DataFrame
从派生的或现有的 Pandas Series
中创建更新的列是特征工程中的一项艰巨活动。新创建的 Series
或列可以使用 Pandas 的本地函数转换为 Dataframe。在本文中,我们将介绍如何将 Pandas 的 Series
转换为 Dataframe。
在下面的例子中,我们将使用下面的代码段来创建 DataFrame。
import pandas as pd
import numpy as np
np.random.seed(0)
df_series = pd.Series(np.random.randint(0,100,size=(10)),
index=['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'])
print (df_series)
输出:
a 44
b 47
c 64
d 67
e 67
f 9
g 83
h 21
i 36
j 87
dtype: int64
使用 pandas.DataFrame()
将单个 Pandas Series
转换为 DataFrame
可以使用 DataFrame()
构造函数,将 Pandas Series
作为参数,将 Series
转换为 Dataframe。
import pandas as pd
import numpy as np
np.random.seed(0)
df_series = pd.Series(np.random.randint(0,100,size=(10)),
index=['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'])
print (pd.DataFrame(df_series, columns=['A']))
输出:
A
a 81
b 37
c 25
d 77
e 72
f 9
g 20
h 80
i 69
j 79
如上所示,函数的输出将返回一个 Dataframe。
使用 pandas.Series.to_frame()
将单个 Pandas Series
转换为 DataFrame
本函数将给定的 Pandas Series
转换为 Dataframe。列的名称可以用 name
参数设置。
import pandas as pd
import numpy as np
np.random.seed(0)
df_series = pd.Series(np.random.randint(0,100,size=(10)),
index=['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'])
print (df_series.to_frame(name='A'))
输出:
A
a 44
b 47
c 64
d 67
e 67
f 9
g 83
h 21
i 36
j 87
在某些情况下,给定的 Series
没有任何名称。在这种情况下,reset_index()
方法可以派上用场。
import pandas as pd
import numpy as np
np.random.seed(0)
df_series = pd.Series(np.random.randint(0,100,size=(10)),
index=['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']).rename_axis('index')
print (df_series)
print ('\n')
print (df_series.reset_index())
输出:
index
a 44
b 47
c 64
d 67
e 67
f 9
g 83
h 21
i 36
j 87
dtype: int64
index 0
0 a 44
1 b 47
2 c 64
3 d 67
4 e 67
5 f 9
6 g 83
7 h 21
8 i 36
9 j 87
如上所示,创建的 DataFrame 中包含了一个名为 0
的新列,并且现有的索引已经被提升为列。可以使用提供给 reset_index()
函数的 name
参数对名为 0
的列进行重命名,如下所示。
import pandas as pd
import numpy as np
np.random.seed(0)
df_series = pd.Series(np.random.randint(0,100,size=(10)),
index=['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']).rename_axis('index')
print (df_series)
print ('\n')
print (df_series.reset_index(name='A'))
输出:
index
a 44
b 47
c 64
d 67
e 67
f 9
g 83
h 21
i 36
j 87
dtype: int64
index A
0 a 44
1 b 47
2 c 64
3 d 67
4 e 67
5 f 9
6 g 83
7 h 21
8 i 36
9 j 87
将多个 Pandas Series 转换为 Dataframe
上面的例子已经证明了将一个单一的 Pandas Series
转换为 Dataframe 的能力。如果有多个 Series
,而这些需要拼接成一个单一的 Dataframe 呢?在创建单个系列后,可以通过使用 concat()
函数进行连接来创建 DataFrame。
import pandas as pd
import numpy as np
np.random.seed(0)
df_series1 = pd.Series(np.random.randint(0,100,size=(10)),
index=['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'])
df_series2 = pd.Series(np.random.randint(40,100,size=(10)),
index=['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'])
df_series3 = pd.Series(np.random.randint(80,100,size=(10)),
index=['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'])
df_stitched = pd.concat([df_series1, df_series2, df_series3], axis=1)
print (df_stitched)
输出:
0 1 2
a 44 46 97
b 47 64 85
c 64 64 93
d 67 52 88
e 67 98 89
f 9 41 99
g 83 78 96
h 21 79 99
i 36 63 85
j 87 86 95
请注意,pd.concat()
函数包含了一个 axis=1
参数,它对应于沿列的追加。如果没有提供 axis
,将对所有 Dataframe 进行合并或联合。
相关文章
Pandas DataFrame DataFrame.shift() 函数
发布时间:2024/04/24 浏览次数:133 分类:Python
-
DataFrame.shift() 函数是将 DataFrame 的索引按指定的周期数进行移位。
Python pandas.pivot_table() 函数
发布时间:2024/04/24 浏览次数:82 分类:Python
-
Python Pandas pivot_table()函数通过对数据进行汇总,避免了数据的重复。
Pandas read_csv()函数
发布时间:2024/04/24 浏览次数:254 分类:Python
-
Pandas read_csv()函数将指定的逗号分隔值(csv)文件读取到 DataFrame 中。
Pandas 多列合并
发布时间:2024/04/24 浏览次数:628 分类:Python
-
本教程介绍了如何在 Pandas 中使用 DataFrame.merge()方法合并两个 DataFrames。
Pandas loc vs iloc
发布时间:2024/04/24 浏览次数:837 分类:Python
-
本教程介绍了如何使用 Python 中的 loc 和 iloc 从 Pandas DataFrame 中过滤数据。
在 Python 中将 Pandas 系列的日期时间转换为字符串
发布时间:2024/04/24 浏览次数:894 分类:Python
-
了解如何在 Python 中将 Pandas 系列日期时间转换为字符串