Pandas Drop Duplicate Rows in DataFrame
This tutorial explains how to DataFrame.drop_duplicates()
remove all duplicate rows from a Pandas DataFrame using the remove_by method.
DataFrame.drop_duplicates()
grammar
DataFrame.drop_duplicates(subset=None, keep="first", inplace=False, ignore_index=False)
It returns a DataFrame with all the duplicate rows removed.
Use DataFrame.drop_duplicates()
the method to remove duplicate rows
import pandas as pd
df_with_duplicates = pd.DataFrame(
{
"Id": [302, 504, 708, 103, 303, 302],
"Name": ["Watch", "Camera", "Phone", "Shoes", "Watch", "Watch"],
"Cost": ["300", "400", "350", "100", "300", "300"],
}
)
df_without_duplicates = df_with_duplicates.drop_duplicates()
print("DataFrame with duplicates:")
print(df_with_duplicates, "\n")
print("DataFrame without duplicates:")
print(df_without_duplicates, "\n")
Output:
DataFrame with duplicates:
Id Name Cost
0 302 Watch 300
1 504 Camera 400
2 708 Phone 350
3 103 Shoes 100
4 303 Watch 300
5 302 Watch 300
DataFrame without duplicates:
Id Name Cost
0 302 Watch 300
1 504 Camera 400
2 708 Phone 350
3 103 Shoes 100
4 303 Watch 300
It removes rows where all values for all columns are the same. By default, rows in a DataFrame are considered duplicates only if they have the same values for each column. In df_with_duplicates
the DataFrame, the first and fifth rows have the same values for all columns, so the fifth row is removed.
Set subset
the parameters to remove duplicates based on specific columns only
import pandas as pd
df_with_duplicates = pd.DataFrame(
{
"Id": [302, 504, 708, 103, 303, 302],
"Name": ["Watch", "Camera", "Phone", "Shoes", "Watch", "Watch"],
"Cost": ["300", "400", "350", "100", "300", "300"],
}
)
df_without_duplicates = df_with_duplicates.drop_duplicates(subset=["Name"])
print("DataFrame with duplicates:")
print(df_with_duplicates, "\n")
print("DataFrame without duplicates:")
print(df_without_duplicates, "\n")
Output:
DataFrame with duplicates:
Id Name Cost
0 302 Watch 300
1 504 Camera 400
2 708 Phone 350
3 103 Shoes 100
4 303 Watch 300
5 302 Watch 300
DataFrame without duplicates:
Id Name Cost
0 302 Watch 300
1 504 Camera 400
2 708 Phone 350
3 103 Shoes 100
Here, we pass Name
as subset
the parameter to drop_duplicates()
the method. The fourth and fifth rows are deleted because their Name
columns have the same value as the first column.
drop_duplicates()
Set in methodkeep='last'
import pandas as pd
df_with_duplicates = pd.DataFrame(
{
"Id": [302, 504, 708, 103, 303, 302],
"Name": ["Watch", "Camera", "Phone", "Shoes", "Watch", "Watch"],
"Cost": ["300", "400", "350", "100", "300", "300"],
}
)
df_without_duplicates = df_with_duplicates.drop_duplicates(subset=["Name"], keep="last")
print("DataFrame with duplicates:")
print(df_with_duplicates, "\n")
print("DataFrame without duplicates:")
print(df_without_duplicates, "\n")
Output:
DataFrame with duplicates:
Id Name Cost
0 302 Watch 300
1 504 Camera 400
2 708 Phone 350
3 103 Shoes 100
4 303 Watch 300
5 302 Watch 300
DataFrame without duplicates:
Id Name Cost
1 504 Camera 400
2 708 Phone 350
3 103 Shoes 100
5 302 Watch 300
It deletes all rows except the last row Name
which has the same value as the column.
We set keep=False
to remove all rows with the same value in any column.
import pandas as pd
df_with_duplicates = pd.DataFrame(
{
"Id": [302, 504, 708, 103, 303, 302],
"Name": ["Watch", "Camera", "Phone", "Shoes", "Watch", "Watch"],
"Cost": ["300", "400", "350", "100", "300", "300"],
}
)
df_without_duplicates = df_with_duplicates.drop_duplicates(subset=["Name"], keep=False)
print("DataFrame with duplicates:")
print(df_with_duplicates, "\n")
print("DataFrame without duplicates:")
print(df_without_duplicates, "\n")
Output:
DataFrame with duplicates:
Id Name Cost
0 302 Watch 300
1 504 Camera 400
2 708 Phone 350
3 103 Shoes 100
4 303 Watch 300
5 302 Watch 300
DataFrame without duplicates:
Id Name Cost
1 504 Camera 400
2 708 Phone 350
3 103 Shoes 100
It deletes the first, fifth, and sixth rows because their Name
columns all have the same values.
For reprinting, please send an email to 1244347461@qq.com for approval. After obtaining the author's consent, kindly include the source as a link.
Related Articles
Finding the installed version of Pandas
Publish Date:2025/04/12 Views:190 Category:Python
-
Pandas is one of the commonly used Python libraries for data analysis, and Pandas versions need to be updated regularly. Therefore, other Pandas requirements are incompatible. Let's look at ways to determine the Pandas version and dependenc
KeyError in Pandas
Publish Date:2025/04/12 Views:81 Category:Python
-
This tutorial explores the concept of KeyError in Pandas. What is Pandas KeyError? While working with Pandas, analysts may encounter multiple errors thrown by the code interpreter. These errors are wide ranging and can help us better invest
Grouping and Sorting in Pandas
Publish Date:2025/04/12 Views:90 Category:Python
-
This tutorial explored the concept of grouping data in a DataFrame and sorting it in Pandas. Grouping and Sorting DataFrame in Pandas As we know, Pandas is an advanced data analysis tool or package extension in Python. Most of the companies
Plotting Line Graph with Data Points in Pandas
Publish Date:2025/04/12 Views:65 Category:Python
-
Pandas is an open source data analysis library in Python. It provides many built-in methods to perform operations on numerical data. Data visualization is very popular nowadays and is used to quickly analyze data visually. We can visualize
Converting Timedelta to Int in Pandas
Publish Date:2025/04/12 Views:123 Category:Python
-
This tutorial will discuss converting a to a using dt the attribute in Pandas . timedelta int Use the Pandas dt attribute to timedelta convert int To timedelta convert to an integer value, we can use the property pandas of the library dt .
Pandas fill NaN values
Publish Date:2025/04/12 Views:93 Category:Python
-
This tutorial explains how we can use DataFrame.fillna() the method to fill NaN values with specified values. We will use the following DataFrame in this article. import numpy as np import pandas as pd roll_no = [ 501 , 502 , 503 , 50
Pandas Convert String to Number
Publish Date:2025/04/12 Views:147 Category:Python
-
This tutorial explains how to pandas.to_numeric() convert string values of a Pandas DataFrame into numeric type using the method. import pandas as pd items_df = pd . DataFrame( { "Id" : [ 302 , 504 , 708 , 103 , 343 , 565 ], "Name" :
How to Change the Data Type of a Column in Pandas
Publish Date:2025/04/12 Views:139 Category:Python
-
We will look at methods for changing the data type of columns in a Pandas Dataframe, as well as options like to_numaric , , as_type and infer_objects . We will also discuss how to to_numaric use downcasting the option in . to_numeric Method
Get the first row of Dataframe Pandas
Publish Date:2025/04/12 Views:78 Category:Python
-
This tutorial explains how to use the get_first_row pandas.DataFrame.iloc attribute and pandas.DataFrame.head() get_first_row method from a Pandas DataFrame. We will use the following DataFrame in the following example to explain how to get