Pandas DataFrame Create New Column Based on Other Columns
DataFrame.apply()
This tutorial will show you how we can create new columns in Pandas DataFrame based on the values of other columns in the DataFrame by applying functions to each element of a column or using methods.
import pandas as pd
items_df = pd.DataFrame(
{
"Id": [302, 504, 708, 103, 343, 565],
"Name": ["Watch", "Camera", "Phone", "Shoes", "Laptop", "Bed"],
"Cost": [300, 400, 350, 100, 1000, 400],
"Discount(%)": [10, 15, 5, 0, 2, 7],
}
)
print(items_df)
Output:
Id Name Cost Discount(%)
0 302 Watch 300 10
1 504 Camera 400 15
2 708 Phone 350 5
3 103 Shoes 100 0
4 343 Laptop 1000 2
5 565 Bed 400 7
We will use the DataFrame shown in the code snippet above to demonstrate how to create new columns in a Pandas DataFrame based on the values of other columns in the DataFrame.
Creating New Columns in Pandas DataFrame Based on Other Columns’ Values Element-wise
import pandas as pd
items_df = pd.DataFrame(
{
"Id": [302, 504, 708, 103, 343, 565],
"Name": ["Watch", "Camera", "Phone", "Shoes", "Laptop", "Bed"],
"Actual Price": [300, 400, 350, 100, 1000, 400],
"Discount(%)": [10, 15, 5, 0, 2, 7],
}
)
print("Initial DataFrame:")
print(items_df, "\n")
items_df["Final Price"] = items_df["Actual Price"] - (
(items_df["Discount(%)"] / 100) * items_df["Actual Price"]
)
print("DataFrame after addition of new column")
print(items_df, "\n")
Output:
Initial DataFrame:
Id Name Actual Price Discount(%)
0 302 Watch 300 10
1 504 Camera 400 15
2 708 Phone 350 5
3 103 Shoes 100 0
4 343 Laptop 1000 2
5 565 Bed 400 7
DataFrame after addition of new column
Id Name Actual Price Discount(%) Final Price
0 302 Watch 300 10 270.0
1 504 Camera 400 15 340.0
2 708 Phone 350 5 332.5
3 103 Shoes 100 0 100.0
4 343 Laptop 1000 2 980.0
5 565 Bed 400 7 372.0
It calculates the final price of each product by subtracting the discount amount value from Actual Price
the column of the DataFrame. It then assigns the final price values Series
to the column items_df
of the DataFrame Final Price
.
DataFrame.apply()
Create a new column in Pandas DataFrame based on the values of other columns using
import pandas as pd
items_df = pd.DataFrame(
{
"Id": [302, 504, 708, 103, 343, 565],
"Name": ["Watch", "Camera", "Phone", "Shoes", "Laptop", "Bed"],
"Actual_Price": [300, 400, 350, 100, 1000, 400],
"Discount_Percentage": [10, 15, 5, 0, 2, 7],
}
)
print("Initial DataFrame:")
print(items_df, "\n")
items_df["Final Price"] = items_df.apply(
lambda row: row.Actual_Price - ((row.Discount_Percentage / 100) * row.Actual_Price),
axis=1,
)
print("DataFrame after addition of new column")
print(items_df, "\n")
Output:
Initial DataFrame:
Id Name Actual_Price Discount_Percentage
0 302 Watch 300 10
1 504 Camera 400 15
2 708 Phone 350 5
3 103 Shoes 100 0
4 343 Laptop 1000 2
5 565 Bed 400 7
DataFrame after addition of new column
Id Name Actual_Price Discount_Percentage Final Price
0 302 Watch 300 10 270.0
1 504 Camera 400 15 340.0
2 708 Phone 350 5 332.5
3 103 Shoes 100 0 100.0
4 343 Laptop 1000 2 980.0
5 565 Bed 400 7 372.0
It apply()
applies the lambda function defined in the method to items_df
each row of the DataFrame and finally assigns a series of results to the columns items_df
of the DataFrame Final Price
.
For reprinting, please send an email to 1244347461@qq.com for approval. After obtaining the author's consent, kindly include the source as a link.
Related Articles
Finding the installed version of Pandas
Publish Date:2025/04/12 Views:190 Category:Python
-
Pandas is one of the commonly used Python libraries for data analysis, and Pandas versions need to be updated regularly. Therefore, other Pandas requirements are incompatible. Let's look at ways to determine the Pandas version and dependenc
KeyError in Pandas
Publish Date:2025/04/12 Views:81 Category:Python
-
This tutorial explores the concept of KeyError in Pandas. What is Pandas KeyError? While working with Pandas, analysts may encounter multiple errors thrown by the code interpreter. These errors are wide ranging and can help us better invest
Grouping and Sorting in Pandas
Publish Date:2025/04/12 Views:90 Category:Python
-
This tutorial explored the concept of grouping data in a DataFrame and sorting it in Pandas. Grouping and Sorting DataFrame in Pandas As we know, Pandas is an advanced data analysis tool or package extension in Python. Most of the companies
Plotting Line Graph with Data Points in Pandas
Publish Date:2025/04/12 Views:65 Category:Python
-
Pandas is an open source data analysis library in Python. It provides many built-in methods to perform operations on numerical data. Data visualization is very popular nowadays and is used to quickly analyze data visually. We can visualize
Converting Timedelta to Int in Pandas
Publish Date:2025/04/12 Views:123 Category:Python
-
This tutorial will discuss converting a to a using dt the attribute in Pandas . timedelta int Use the Pandas dt attribute to timedelta convert int To timedelta convert to an integer value, we can use the property pandas of the library dt .
Pandas fill NaN values
Publish Date:2025/04/12 Views:93 Category:Python
-
This tutorial explains how we can use DataFrame.fillna() the method to fill NaN values with specified values. We will use the following DataFrame in this article. import numpy as np import pandas as pd roll_no = [ 501 , 502 , 503 , 50
Pandas Convert String to Number
Publish Date:2025/04/12 Views:147 Category:Python
-
This tutorial explains how to pandas.to_numeric() convert string values of a Pandas DataFrame into numeric type using the method. import pandas as pd items_df = pd . DataFrame( { "Id" : [ 302 , 504 , 708 , 103 , 343 , 565 ], "Name" :
How to Change the Data Type of a Column in Pandas
Publish Date:2025/04/12 Views:139 Category:Python
-
We will look at methods for changing the data type of columns in a Pandas Dataframe, as well as options like to_numaric , , as_type and infer_objects . We will also discuss how to to_numaric use downcasting the option in . to_numeric Method
Get the first row of Dataframe Pandas
Publish Date:2025/04/12 Views:78 Category:Python
-
This tutorial explains how to use the get_first_row pandas.DataFrame.iloc attribute and pandas.DataFrame.head() get_first_row method from a Pandas DataFrame. We will use the following DataFrame in the following example to explain how to get