Pandas DataFrame DataFrame.shift() function
The Pandas DataFrame.shift method is used to DataFrame
shift the index of a by a specified number of periods, with an optional time frequency.
pandas.DataFrame.shift()
grammar
DataFrame.shift(periods=1, freq=None, axis=0, fill_value=None)
parameter
periods |
Integer. Determines the number of cycles to move the index. Can be negative or positive. |
freq |
DateOffset , tseries.offsets , timedelta or str . Optional parameter used to move index values without adjusting the data |
axis |
Move along rows ( axis=0 ) or columns ( )axis=1 |
fill_value |
Scalar value for newly introduced missing values |
Return Value
DataFrame
It returns a object with the shifted index values .
Example code: DataFrame.shift()
Function moves along the line
import pandas as pd
df = pd.DataFrame({'X': [1, 2, 3,],
'Y': [4, 1, 8]})
print("Original DataFrame:")
print(df)
shifted_df=df.shift(periods=1)
print("Shifted DataFrame")
print(shifted_df)
Output:
Original DataFrame:
X Y
0 1 4
1 2 1
2 3 8
Shifted DataFrame
X Y
0 NaN NaN
1 1.0 4.0
2 2.0 1.0
Here, we periods
set the value of to 1
, which will DataFrame
move the rows of from the top to the bottom 1
by units.
As you move toward the bottom, the top row becomes empty and NaN
is filled with the default value.
If we want to move the row from the bottom to the top, we can periods
set the parameter to a negative value.
import pandas as pd
df = pd.DataFrame({'X': [1, 2, 3,],
'Y': [4, 1, 8]})
print("Original DataFrame:")
print(df)
shifted_df=df.shift(periods=-2)
print("Shifted DataFrame")
print(shifted_df)
Output:
Original DataFrame:
X Y
0 1 4
1 2 1
2 3 8
Shifted DataFrame
X Y
0 3.0 8.0
1 NaN NaN
2 NaN NaN
It moves the rows from bottom to top with a period of 2
.
Example code: DataFrame.shift()
Function moves along columns
If we want to move along the column axis, we shift()
set that in the method axis=1
.
import pandas as pd
df = pd.DataFrame({'X': [1, 2, 3,],
'Y': [4, 1, 8]})
print("Original DataFrame:")
print(df)
shifted_df=df.shift(periods=1,axis=1)
print("Shifted DataFrame")
print(shifted_df)
Output:
Original DataFrame:
X Y
0 1 4
1 2 1
2 3 8
Shifted DataFrame
X Y
0 NaN 1.0
1 NaN 2.0
2 NaN 3.0
Here, we periods
set the value of to 1
, which will DataFrame
shift the column axis of from left to right 1
by units.
If we want to move the column axis from right to left, we periods
set a negative value for the parameter.
import pandas as pd
df = pd.DataFrame({'X': [1, 2, 3,],
'Y': [4, 1, 8]})
print("Original DataFrame:")
print(df)
shifted_df=df.shift(periods=-1,axis=1)
print("Shifted DataFrame")
print(shifted_df)
Output:
Original DataFrame:
X Y
0 1 4
1 2 1
2 3 8
Shifted DataFrame
X Y
0 4.0 NaN
1 1.0 NaN
2 8.0 NaN
It shifts the column axis from right to left 1
by periods.
Example code: DataFrame.shift
method with parametersfill_value
In the previous example, the missing values after shifting are filled by default , but we can also fill them with other values instead of NaN
by using the parameter . We can also fill the missing values with other values instead of by using the parameter .fill_value
NaN
fill_value
NaN
import pandas as pd
df = pd.DataFrame({'X': [1, 2, 3,],
'Y': [4, 1, 8]})
print("Original DataFrame:")
print(df)
shifted_df=df.shift(periods=-1,
axis=1,
fill_value=4)
print("Shifted DataFrame")
print(shifted_df)
Output:
Original DataFrame:
X Y
0 1 4
1 2 1
2 3 8
Shifted DataFrame
X Y
0 4 4
1 1 4
2 8 4
It fills all shift()
missing values created by the method with .4
For reprinting, please send an email to 1244347461@qq.com for approval. After obtaining the author's consent, kindly include the source as a link.
Related Articles
Finding the installed version of Pandas
Publish Date:2025/04/12 Views:190 Category:Python
-
Pandas is one of the commonly used Python libraries for data analysis, and Pandas versions need to be updated regularly. Therefore, other Pandas requirements are incompatible. Let's look at ways to determine the Pandas version and dependenc
KeyError in Pandas
Publish Date:2025/04/12 Views:81 Category:Python
-
This tutorial explores the concept of KeyError in Pandas. What is Pandas KeyError? While working with Pandas, analysts may encounter multiple errors thrown by the code interpreter. These errors are wide ranging and can help us better invest
Grouping and Sorting in Pandas
Publish Date:2025/04/12 Views:90 Category:Python
-
This tutorial explored the concept of grouping data in a DataFrame and sorting it in Pandas. Grouping and Sorting DataFrame in Pandas As we know, Pandas is an advanced data analysis tool or package extension in Python. Most of the companies
Plotting Line Graph with Data Points in Pandas
Publish Date:2025/04/12 Views:65 Category:Python
-
Pandas is an open source data analysis library in Python. It provides many built-in methods to perform operations on numerical data. Data visualization is very popular nowadays and is used to quickly analyze data visually. We can visualize
Converting Timedelta to Int in Pandas
Publish Date:2025/04/12 Views:123 Category:Python
-
This tutorial will discuss converting a to a using dt the attribute in Pandas . timedelta int Use the Pandas dt attribute to timedelta convert int To timedelta convert to an integer value, we can use the property pandas of the library dt .
Pandas fill NaN values
Publish Date:2025/04/12 Views:93 Category:Python
-
This tutorial explains how we can use DataFrame.fillna() the method to fill NaN values with specified values. We will use the following DataFrame in this article. import numpy as np import pandas as pd roll_no = [ 501 , 502 , 503 , 50
Pandas Convert String to Number
Publish Date:2025/04/12 Views:147 Category:Python
-
This tutorial explains how to pandas.to_numeric() convert string values of a Pandas DataFrame into numeric type using the method. import pandas as pd items_df = pd . DataFrame( { "Id" : [ 302 , 504 , 708 , 103 , 343 , 565 ], "Name" :
How to Change the Data Type of a Column in Pandas
Publish Date:2025/04/12 Views:139 Category:Python
-
We will look at methods for changing the data type of columns in a Pandas Dataframe, as well as options like to_numaric , , as_type and infer_objects . We will also discuss how to to_numaric use downcasting the option in . to_numeric Method
Get the first row of Dataframe Pandas
Publish Date:2025/04/12 Views:78 Category:Python
-
This tutorial explains how to use the get_first_row pandas.DataFrame.iloc attribute and pandas.DataFrame.head() get_first_row method from a Pandas DataFrame. We will use the following DataFrame in the following example to explain how to get