Flattening Hierarchical Indexes in Pandas Columns
This article will discuss how to flatten a hierarchical index in a Pandas Dataframe column.
Groupby aggregation functions are often used to create hierarchical indexes. The used aggregation function will be visible in the hierarchical index of the resulting DataFrame.
We will use different functions to explain how to flatten a hierarchical index across columns.
rest_index()
Flattening a Hierarchical Index in a Pandas Column Using
The function in Pandas reset_index()
flattens the hierarchical index created by the groupby aggregation function.
grammar:
pandas.DataFrame.reset_index(level, drop, inplace)
in,
level
: Remove only the indicated level from the index.drop
: Reset the index to the default integer index.inplace
: Do not copy, permanently modify the DataFrame object.
We use the Pandas groupby()
function to group the bus sales data by quarter and reset_index()
the pandas function to flatten the hierarchical index column of the grouped DataFrame.
First, we import the Python Pandas library and then create a simple DataFrame. The DataFrame is stored in data_bus
a variable.
import pandas as pd
data_bus = pd.DataFrame(
{
"bus": ["2x", "3Tr", "4x", "5x"],
"bus_sale_q1": [21, 23, 25, 27],
"bus_sale_q2": [12, 14, 16, 18],
},
columns=["bus", "bus_sale_q1", "bus_sale_q2"],
)
print(data_bus)
Output:
bus bus_sale_q1 bus_sale_q2
0 2x 21 12
1 3Tr 23 14
2 4x 25 16
3 5x 27 18
The above output shows the simple DataFrame created. After that, groupby()
the total column is grouped based on the sum of sales q1 and q2 using the function.
grouped_data = data_bus.groupby(by="bus").agg("sum")
grouped_data
Output:
bus bus_sale_q1 bus_sale_q2
2x 21 12
3Tr 23 14
4x 25 16
5x 27 18
We will use reset_index()
the function to flatten the hierarchical index columns.
flat_data = grouped_data.reset_index()
flat_data
Output:
bus bus_sale_q1 bus_sale_q2
0 2x 21 12
1 3Tr 23 14
2 4x 25 16
3 5x 27 18
as_index
Flattening a Hierarchical Index in a Pandas Column Using
The pandas groupby()
function will be used to group the bus sales data by quarter, while as_index
the hierarchical index column of the grouped DataFrame will be flattened.
grammar:
pandas.DataFrame.groupby(by, level, axis, as_index)
in,
level
: The column on which the groupby operation must be performed.by
: The column on which the groupby operation must be performed.axis
: Whether to split along rows (0) or columns (1).as_index
: For aggregate output, returns an object with indexed group labels.
We will groupby()
group the bus sales data by quarter using the Pandas function with as_index
the parameter set to False. This ensures that the hierarchical index of the grouped DataFrame is flattened.
We will use the same DataFrame as in the previous example.
example:
import pandas as pd
data_bus = pd.DataFrame(
{
"bus": ["2x", "3Tr", "4x", "5x"],
"bus_sale_q1": [21, 23, 25, 27],
"bus_sale_q2": [12, 14, 16, 18],
},
columns=["bus", "bus_sale_q1", "bus_sale_q2"],
)
data_bus
grouped_data = data_bus.groupby(by="bus", as_index=False).agg("sum")
print(grouped_data)
Output:
bus bus_sale_q1 bus_sale_q2
0 2x 21 12
1 3Tr 23 14
2 4x 25 16
3 5x 27 18
For reprinting, please send an email to 1244347461@qq.com for approval. After obtaining the author's consent, kindly include the source as a link.
Related Articles
Finding the installed version of Pandas
Publish Date:2025/04/12 Views:190 Category:Python
-
Pandas is one of the commonly used Python libraries for data analysis, and Pandas versions need to be updated regularly. Therefore, other Pandas requirements are incompatible. Let's look at ways to determine the Pandas version and dependenc
KeyError in Pandas
Publish Date:2025/04/12 Views:81 Category:Python
-
This tutorial explores the concept of KeyError in Pandas. What is Pandas KeyError? While working with Pandas, analysts may encounter multiple errors thrown by the code interpreter. These errors are wide ranging and can help us better invest
Grouping and Sorting in Pandas
Publish Date:2025/04/12 Views:90 Category:Python
-
This tutorial explored the concept of grouping data in a DataFrame and sorting it in Pandas. Grouping and Sorting DataFrame in Pandas As we know, Pandas is an advanced data analysis tool or package extension in Python. Most of the companies
Plotting Line Graph with Data Points in Pandas
Publish Date:2025/04/12 Views:65 Category:Python
-
Pandas is an open source data analysis library in Python. It provides many built-in methods to perform operations on numerical data. Data visualization is very popular nowadays and is used to quickly analyze data visually. We can visualize
Converting Timedelta to Int in Pandas
Publish Date:2025/04/12 Views:123 Category:Python
-
This tutorial will discuss converting a to a using dt the attribute in Pandas . timedelta int Use the Pandas dt attribute to timedelta convert int To timedelta convert to an integer value, we can use the property pandas of the library dt .
Pandas fill NaN values
Publish Date:2025/04/12 Views:93 Category:Python
-
This tutorial explains how we can use DataFrame.fillna() the method to fill NaN values with specified values. We will use the following DataFrame in this article. import numpy as np import pandas as pd roll_no = [ 501 , 502 , 503 , 50
Pandas Convert String to Number
Publish Date:2025/04/12 Views:147 Category:Python
-
This tutorial explains how to pandas.to_numeric() convert string values of a Pandas DataFrame into numeric type using the method. import pandas as pd items_df = pd . DataFrame( { "Id" : [ 302 , 504 , 708 , 103 , 343 , 565 ], "Name" :
How to Change the Data Type of a Column in Pandas
Publish Date:2025/04/12 Views:139 Category:Python
-
We will look at methods for changing the data type of columns in a Pandas Dataframe, as well as options like to_numaric , , as_type and infer_objects . We will also discuss how to to_numaric use downcasting the option in . to_numeric Method
Get the first row of Dataframe Pandas
Publish Date:2025/04/12 Views:78 Category:Python
-
This tutorial explains how to use the get_first_row pandas.DataFrame.iloc attribute and pandas.DataFrame.head() get_first_row method from a Pandas DataFrame. We will use the following DataFrame in the following example to explain how to get